On Chebyshev-Type Quadratures

نویسندگان

  • Hiroki Yanagiwara
  • WALTER GAUTSCHI
  • HIROKI YANAGIWARA
چکیده

According to a result of S. N. Bernstein, «-point Chebyshev quadrature formulas, with all nodes real, do not exist when n = 8 or n ä 10. Modifications of such quadrature formulas have recently been suggested by R. E. Barnhill, J. E. Dennis, Jr. and G. M. Nielson, and by D. Kahaner. We establish here certain empirical observations made by these authors, notably the presence of multiple nodes. We also show how some of the quadrature rules proposed can be constructed by solving single algebraic equations, and we compute the respective nodes to 25 decimal digits. The same formulas also arise in recent work of P. Rabinowitz and N. Richter as limiting cases of optimal Chebyshev-type quadrature rules in a Hubert space setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Szego quadratures associated with Chebyshev weight functions

In this paper we characterize rational Szegő quadrature formulas associated with Chebyshev weight functions, by giving explicit expressions for the corresponding para-orthogonal rational functions and weights in the quadratures. As an application, we give characterizations for Szegő quadrature formulas associated with rational modifications of Chebyshev weight functions. Some numerical experime...

متن کامل

Solving singular integral equations by using orthogonal polynomials

In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...

متن کامل

Simple universal bounds for Chebyshev-type quadratures

A Chebyshev-type quadrature for a probability measure σ is a distribution which is uniform on n points and has the same first k moments as σ. We give bounds for the smallest possible n required to achieve a certain degree k. In contrast to previous results of this type, our bounds use only simple properties of σ and are thus applicable in wide generality. In particular, it is shown that wheneve...

متن کامل

On Multivariate Chebyshev Polynomials and Spectral Approximations on Triangles

In this paper we describe the use of multivariate Chebyshev polynomials in computing spectral derivations and Clenshaw–Curtis type quadratures. The multivariate Chebyshev polynomials give a spectrally accurate approximation of smooth multivariate functions. In particular we investigate polynomials derived from the A2 root system. We provide analytic formulas for the gradient and integral of A2 ...

متن کامل

Nonexistence of Chebyshev - Type Quadratures on Infinite Intervals

Quadrature rules on semi-infinite and infinite intervals are considered involving weight functions of the Laguerre and Hermite type. It is shown that such quadrature rules cannot have equal coefficients and real nodes unless the algebraic degree of accuracy is severely limited.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010